龚斌磊,经济学博士,浙江大学公共管理学院研究员、博导,教育部青年长江学者,国家社科基金重大项目首席专家。师从国际效率与生产率分析学会 (ISEAPA) 创始主席 Robin Sickles 教授,博士论文《多部门组织生产率及绩效分析》获美国莱斯大学杰出博士论文奖。研究领域属于应用计量与发展经济学,聚焦农业经济学、产业经济学、资源与环境经济学等方向,关注整体经济、农业和能源行业的技术进步、生产率和增长核算等议题。个人独著发表在 Journal of Development Economics, American Journal of Agricultural Economics 等期刊,合作论文发表在 Journal of Development Economics, Journal of Productivity Analysis, 《管理世界》《经济学(季刊)》等期刊。主持国家社科基金重大项目和国家自然科学基金 (国际重点、面上、青年) 项目,多份报告获国家和省部领导肯定批示,并被国办和农办采用。
想达到让学生「听懂+会用」的效果并非易事。这需要老师能深入浅出地讲清楚模型的基本思想、适用条件,结果的解释和呈现,在文献中的应用情况,以及在实操中可能遇到的各种问题。此次授课的老师在过去的十年中都一直在应用和优化课程中涵盖的模型和方法,自主编写了大量的相关程序。因此,我们有信心让学生们「听懂」。那么,如何确保学生们「会用」呢?我们最终商议的方案是「案例教学+干中学」。在每个专题中,我们都会精讲多篇期刊论文的 Stata 实现过程,伴以研究过程中的各种思考和解决思路。课后,大家可以通过「精读论文 + 软件实操」的方式,逐步吸收、提升。
主讲本次课程的两位嘉宾在效率领域著述颇丰,具有很高的影响力。
主讲 TFP 专题 的龚斌磊老师是「青年长江学者」,是国际效率与生产率分析学会 (ISEAPA) 创始主席 Robin Sickles 教授的得意门生,博士论文获美国莱斯大学杰出博士论文奖。他长期关注整体经济、农业和能源行业的技术进步、生产率和增长核算等议题,成果见诸于 Journal of Development Economics, American Journal of Agricultural Economics 等期刊。
主讲 SFA 和 DEA 专题 的杜克锐老师多年来一直专注于效率分析方法的改进。先后编写过十多个被广泛应用的 Stata 命令,覆盖了多个最新的研究方法,先后在 Stata Journal 上发表了三篇论文。这些方法也广泛应用于能源效率和环境评价领域,相关成果呈现于《经济研究》、《世界经济》、《Energy Economics (9 篇)》、《China Economic Review (3 篇)》等国内外重要期刊。
在内容安排上,第一讲涵盖了有关 TFP (全要素生产率) 估算中的各种方法和最新进展,并结合利用 Stata 来展示这些方法的实际应用。
Ackerberg, D., K. Caves, and G. Frazer. 2015. Identification Properties of Recent Production Function Estimators. Econometrica 83(6): 2411-2451. -PDF-
Chen, S., and B. Gong. 2021. Response and adaptation of agriculture to climate change: Evidence from China. Journal of Development Economics 148: 102557. -PDF-
Gong, B. 2018a. Agricultural reforms and production in China changes in provincial production function and productivity in 1978–2015. Journal of Development Economics 132:18-31. -PDF-
Gong, B. 2018b. "Interstate competition in agriculture: Cheer or fear? Evidence from the United States and China." Food Policy 81:37-47. -PDF-
Gong, B. 2020a. Agricultural productivity convergence in China. China Economic Review 60:101423. -PDF-
Gong, B. 2020b. New Growth Accounting. American Journal of Agricultural Economics 102 (2):641-661. -PDF-
Gong, B., and R. C. Sickles. 2020. Non-structural and structural models in productivity analysis: study of the British Isles during the 2007–2009 financial crisis. Journal of Productivity Analysis 53 (2):243-263. -PDF-
Gong, B., and R. C. Sickles. 2021. Resource allocation in multi-divisional multi-product firms. Journal of Productivity Analysis forthcoming. -PDF-
Levinsohn, James and Amil Petrin. 2003. "Estimating Production Functions Using Inputs to Control for Unobservables." The Review of Economic Studies 70 (2): pp. 317–341. -PDF-
Lin, Y. 1992. Rural Reforms and Agricultural Growth in China. American Economic Review 82 (1):34-51. -PDF-
Olley, G.S. and A. Pakes. 1996. "The dynamics of productivity in the telecommunications equipment industry." Econometrica 64 (6):1263–1297. -PDF-
Belotti, F., S. Daidone, G. Ilardi, V. Atella, 2013, Stochastic frontier analysis using stata, Stata Journal, 13 (4): 719–758. -PDF-, -PDF-v2-
Greene, W., 2005, Fixed and random effects in stochastic frontier models, Journal of Productivity Analysis, 23 (1): 7-32. -PDF-
Kumbhakar, S., E. Tsionas, T. Sipil inen, 2009, Joint estimation of technology choice and technical efficiency: An application to organic and conventional dairy farming, Journal of Productivity Analysis, 31 (3): 151-161. -PDF-
Kumbhakar, S. C., H. J. Wang, A. P. Horncastle, 2015, A practitioner's guide to stochastic frontier analysis using stata, Cambridge University Press. Link
Kumbhakar, S. C., C. F. Parmeter, V. Zelenyuk, 2017, Stochastic frontier analysis: Foundations and advances. Working paper. -PDF-
Habib, M., A. Ljungqvist, 2005, Firm value and managerial incentives: A stochastic frontier approach, Journal of Business, 78 (6): 2053-2094. -PDF-
Wang, H. J., C. W. Ho, 2010, Estimating fixed-effect panel stochastic frontier models by model transformation, Journal of Econometrics, 157 (2): 286-296. -PDF-
Charnes, A., Cooper, W.W., Rhodes, E., 1978. Measuring the efficiency of decision making units. European Journal of Operational Research, 2, 429-444. -PDF-
Banker, R.D., Charnes, A., Cooper, W.W., 1984. Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Management Science, 30, pp. 1078-1092. -PDF-
Färe, R., Grosskopf, S., Norris, M., & Zhang, Z. (1994) . Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries. American Economic Review, 84(1), 66-83. -PDF-
Ray, S., & Desli, E. (1997) . Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries: Comment. American Economic Review, 87(5), 1033-1039. -PDF-
Tone, K., 2001. A slacks-based measure of efficiency in data envelopment analysis. European Journal of Operational Research, 130, 498-509. -PDF-
Pastor, J., Lovell, C. (2005) . A global Malmquist productivity index, Economics Letters, 88(2):266-271. -PDF-
Shestalova.V (2003) . Sequential malmquist indices of productivity growth: an application to oecd industrial activities. Journal of Productivity Analysis, 19(2-3), 211-226. -PDF-
Chung Y, Färe R, Grosskopf S. 1997.Productivity and Undesirable Outputs: A Directional Distance Function Approach. J Environ Manage; 51:229-40. -PDF-
Zhou P, Ang BW, Wang H. Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach. European Journal of Operational Research 2012;221:625-35. -PDF-
Zhang N, Choi Y. Total-factor carbon emission performance of fossil fuel power plants in China: A metafrontier non-radial Malmquist index analysis. Energy Economics 2013; 40: 549-59. -PDF-
Zhang N., Kong F., Choi Y., Zhou, P. 2014. The effect of size-control policy on unified energy and carbon efficiency for Chinese fossil fuel power plants. Energy Policy, 70, 193-200. -PDF-
Zhang, N., Xie H. 2015. Toward Green IT: Modeling Sustainable Production Characteristics for Chinese Electronic Information Industry, 1980-2012. Technological Forecasting and Social Change, 96, 62-70. -Link-, -PDF-, -PDF2-
Zhang, N., Kung, C., Zhou, P. 2015. Total-factor carbon emission performance of the Chinese transportation industry: A bootstrapped non-radial Malmquist index analysis. Renewable and Sustainable Energy Reviews, 41, 584-593. -Link-, -PDF-, -PDF2-
Zhang, Ning, Fanbin Kong, and Chih-Chun Kung. 2015. On Modeling Environmental Production Characteristics: A Slacks-Based Measure for China’s Poyang Lake Ecological Economics Zone. Computing in Economics and Finance, 46 (3): 389–404. -Link-, -PDF-, -PDF2-
Oh D. A global Malmquist-Luenberger productivity index. Journal of Productivity Analysis 2010;34: 183–97. -PDF-
Oh D. A metafrontier approach for measuring an environmentally sensitive productivity growth index. Energy Economics 2010;32: 146-57. -PDF-
Oh D, Heshmati A. A sequential Malmquist–Luenberger productivity index: Environmentally sensitive productivity growth considering the progressive nature of technology. Energy Economics 2010;32: 1345-55. -PDF-
Fujii, H., Managi, S., Matousek, R. 2014, “Indian bank efficiency and productivity changes with undesirable outputs: A disaggregated approach. Journal of Banking and Finance”, Vol.38, 41-50. -PDF-