第 3 讲,空间联立方程模型部分,新增了网络分析中对「主导单元」的识别和分析方法 (Pesaran and Yang, 2020),其政策含义甚为丰富,可以应用于国际贸易、企业投融资,以及区域经济等方向。、
第 4 讲,「同群效应」部分,新增了如何分析金融网络的中心度和稳定性 (Li and Schürhoff, 2019, JF);增加了杨海生老师团队新近发表的论文的讲解,涉及中国房价的溢出效应等话题 (Lu Li and Yang, 2021, JAE;Lu Li and Yang, 2022, EM, R&R)。
Anselin, Luc. 1988. Spatial Econometrics: Methods and Models. -Link-
Aquaro M., Bailey N., Pesaran M. H., 2021, Estimation and Inference for Spatial Models with Heterogeneous Coefficients: An Application to U.S. House Prices[J]. Journal of Applied Econometrics 36 (1): 18–44. -PDF-
Blasques F, Koopman S J, Lucas A, et al. 2016, Spillover dynamics for systemic risk measurement using spatial financial time series models[J]. Journal of Econometrics, 195(2): 211-223. -PDF-
Case A. C. , Rosen H. S., Hines J. R., 1993, Budget spillovers and fiscal policy interdependence: Evidence from the states[J]. Journal of Public Economics, 52 (3): 285-307. -PDF-
Chen Shaoling, Wang Susheng, Yang Haisheng, 2015, Spatial Competition and Interdependence in Strategic Decisions: Empirical Evidence from Franchising[J]. Economic Geography, 91 (2): 165-204. -PDF-
Elhorst J. P., 2014, Spatial econometrics: from cross-sectional data to spatial panels [M], Heidelberg, New York, Dordrecht, London: Springer. -PDF-
Foucault T., Fresard L., 2014, Learning from Peers' Stock Prices and Corporate Investment[J]. Journal of Financial Economics, 111 (3): 554-577. -PDF-
Hauzenberger, Niko, and Michael Pfarrhofer. 2021. Bayesian State‐space Modeling for Analyzing Heterogeneous Network Effects of US Monetary Policy. The Scandinavian Journal of Economics, forthcoming. -PDF-
Keane M., Neal. T, 2020, Climate Change and U.S. Agriculture: Accounting for Multidimensional Slope Heterogeneity in Panel Data[J], Quantitative Economics, 11 (4): 1391–1429. -PDF-, -Link-
Kelejian H. H., Prucha I. R., 2010, Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances[J]. Journal of Econometrics, 157 (1): 53-67. -PDF-
Leary M. T., Roberts M. R., 2014, Do Peer Firms Affect Corporate Financial Policy?[J]. Journal of Finance, 69 (1): 139–178. -PDF-
Lee Lung-fei, Jihai Yu, 2010, Estimation of spatial autoregressive panel data models with fixed effects[J]. Journal of Econometrics,154 (2): 165-185. -PDF-
Lee Lung-Fei, 2007, GMM and 2SLS estimation of mixed regressive, spatial autoregressive models[J]. Journal of Econometrics, 137 (2): 489-514. -PDF-
Lee Lung-fei, Xiaodong Liu, 2010, Efficient GMM estimation of high order spatial autoregressive models with autoregressive disturbances[J]. Econometric Theory, 26 (1): 44. -PDF-
LeSage J. P., Pace R. K., 2009, Introduction to spatial econometrics [M], New York: CRC Press Taylor & Francis Group. -PDF-
Li, D., N. Schürhoff, 2019, Dealer networks, Journal of Finance, 74 (1): 91-144. -Link-, -PDF-
Lu, Y., J. Li, H. Yang, 2021, Time-varying inter-urban housing price spillovers in china: Causes and consequences, Journal of Asian Economics, 77: 101396. -Link-, -PDF-
Parsons, C. A., R. Sabbatucci, and S. Titman. 2020. “Geographic Lead-Lag Effects.” Review of Financial Studies 33 (10): 4721–70. -PDF-
Pesaran M. H., Yang C. F., 2020, Econometric Analysis of Production Networks with Dominant Units[J]. Journal of Econometrics, 219(2): 507-541. -PDF-
Pirinsky C., Wang Q, 2006, Does Corporate Headquarters Location Matter for Stock Returns?[J]. Journal of Finance, 61 (4): 1991-2015. -PDF-
Qu, Xi, and Lung-fei Lee. 2015. Estimating a Spatial Autoregressive Model with an Endogenous Spatial Weight Matrix. Journal of Econometrics 184 (2): 209–32. -PDF-
Qu, Xi, Xiaoliang Wang, and Lung‐fei Lee. 2016. Instrumental Variable Estimation of a Spatial Dynamic Panel Model with Endogenous Spatial Weights When T Is Small. Econometrics Journal 19 (3): 261–90. -PDF-, -Link-
Seo, Hojun. 2021. Peer Effects in Corporate Disclosure Decisions. Journal of Accounting and Economics 71 (1): 101364. -PDF-
Bidanset P., et al., 2018, Accounting for locational, temporal, and physical similarity of residential sales in mass appraisal modeling: introducing the development and application of geographically, temporally, and characteristically weighted regression, Journal of Property Tax Assessment & Administration, 14(02): 4~12. -PDF-
Chagas A. L. S., Azzoni C. R., Almeida A. N., 2016, A spatial difference-in-differences analysis of the impact of sugarcane production on respiratory diseases, Regional Science and Urban Economics, 59: 24~36. -PDF-
Chen F., Mei C., 2020, Scale-adaptive estimation of mixed geographically weighted regression models, 12.[J], Economic Modelling, doi.org/10.1016/j.econmod.2020.02.015. -PDF-
Du Z., et al., 2018, Extending geographically and temporally weighted regression to account for both spatiotemporal heterogeneity and seasonal variations in coastal seas, Ecological Informatics, 43: 185~199. -PDF-
Elhorst J. P., 2014, Spatial econometrics: from cross-sectional data to spatial panels [M], Heidelberg, New York, Dordrecht, London: Springer. -PDF-, -PDF2-
Elhorst J. P., Piras G., Arbia G., 2010, Growth and convergence in a multiregional model with space–time dynamics, Geographically Analysis, 52(03): 338~355. -PDF-
Elhorst J. P., 2005, Unconditional maximum likelihood estimation of linear and log-linear dynamic models for spatial panels. Geographically Analysis, 37(1): 62~83. -PDF-
Ertur C., Koch W., 2007, Growth, technological interdependence and spatial externalities: theory and evidence. Journal of Applied Econometrics, 22(6): 1033~1062. -PDF-
Fotheringham A. S., Crespo R., Yao J., 2015, Geographical and temporal weighted regression (GTWR), Geographical Analysis, 47: 431~452. -PDF-
Fotheringham A. S., Yang W., Kang W., 2017, Multiscale Geographically Weighted Regression (MGWR), Annals of American Association of Geographers, 107(06): 1247~1265. -PDF-
Harris P., Brunsdon C., Charlton M., 2011, Geographically weighted principal components analysis, International Journal of Geographical Information Science, 25(10): 1717~1736. -PDF-
Huang B., Wu B., Barry M., 2010, Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices, International Journal of Geographical Information Science, 24(03): 383~401. -PDF-
Kolak M., Anselin L., 2020, A spatial perspective on the econometrics of program evaluation, International Regional Science Review, 43(1/2): 128~153. -PDF-
LeSage J. P., Pace R. K., 2009, Introduction to spatial econometrics [M], New York: CRC Press Taylor & Francis Group. -Link-
Oshan T, M., Fotheringham A. S., 2018, A comparison of spatially varying regression coefficient estimates using geographically weighted and spatial-filter-based techniques, Geographical Analysis, 50: 53~75. -PDF-
Yang Z., Li C., Tse Y. K., 2006, Functional form and spatial dependence in spatial panels, Economics Letters, 91(1): 138~145. -PDF-