温馨提示: 定期 清理浏览器缓存,可以获得最佳浏览体验。
作者:连玉君 (中山大学)
E-Mail: arlionn@163.com
目录
多数情况下,我们的被解释变量都是连续变量,但也有些情况下,我们会对分类变量感兴趣,比如,出门时选择何种交通工具?大学毕业时是否继续读研?等等。那么,此时,该用何种模型来分析比较合适呢?
分类变量可以被进一步分为多种类型,要根据情况来选择合适的模型。
例如,是否结婚? 是否生二胎? 是否买越野车 ……,被解释变量都是非此即彼的二元选择问题。此时,最为常用的是 Logit 或 Probit 模型,二者虽然形式上有差异,在系数解释、概率预测方面的差异却很小。
若使用 Stata 进行估计,语法也很简单。
sysuse auto, clear
logit foreign price weight mpg // Logit 估计
probit foreign price weight mpg // Probit 估计
更为详细的介绍,请参阅:
例如,被解释变量为「
类似的例子还有很多,例如:
此时可以使用 多元 Logit/Probit 模型 (Multinomial Logit/Probit regression) 进行估计,对应的 Stata 命令是 mlogit
和 mprobit
。Stata 帮助文件和电子手册提供了详细的范例和说明。
本质上,可以把多元 Logit 视为多个二元 Logit,同时附加一些约束条件,例如,要求各种选择的概率之和为 1,且每一组二元 Logit 模型的干扰项之间彼此存在一定相关性。
如下是相关参考资料:
类别数较多时,比如,超过 10 组甚至 20 组,直接进行分析的难度较大。退一步来讲,此时组间的差异分析也不容易进行,经济含义比较难以说清楚。
一个比较稳妥的处理方式是,根据相关的理论和经验分析对现有的分类进行适当合并,使分析对象相对集中一些。
例如,可以把「A. 银行短期贷款;B. 银行长期贷款;C. 商业票据;D. 可赎回债券」等融资方式都归类为「1. 债务融资」,进而与「2. 内部融资」和「3.权益融资」放在一起进行对比分析。 从理论上讲,上述小类 (A, B, C, D) 虽然也有差别,当相对于大类 (1, 2, 3) 之间的差异而言,这些差别的重要性就会大大降低。从大类层面进行分析便于我们抓住问题的本质。
有时候,我们是无法明确区分「类别变量」和「序别变量」的。例如,「HY - 幸福感」 —— 取值为 1-5,5 代表“非常幸福”。
你可以把 HY 视为类别变量,使用 mlogit
模型来分析 HY=5 和 HY=4 的人群有哪些差别。此时,数字 4 和 5 只是用来标记两类人群的,并不存在
你也可以把 HY 视为序别变量,用 有序 (Ordered) Logit / Probit 分析幸福感的提升 (由 1 → 2 或 4 → 5) 受哪些因素的影响。此时,
相对而言,后者用的多一些,但也有文章同时从上述两个角度进行分析,因为二者并不存在孰优孰劣的问题。
上述两个模型的 Stata 命令为 mlogit
和 ologit
。如下是两个不错的例子:
除了上述提到的 Logit / Probit 族模型外,在某些情况下,也会考虑使用 计数模型 (Count Data model, help poisson
, help nbreg
) 来分析诸如 专利个数、交通违章次数 等有「计数」特征的变量。
连享会-直播课 上线了!
http://lianxh.duanshu.com
免费公开课:
直击面板数据模型 - 连玉君,时长:1小时40分钟 Stata 33 讲 - 连玉君, 每讲 15 分钟. 部分直播课 课程资料下载 (PPT,dofiles等)
支持回看,所有课程可以随时购买观看。
专题 | 嘉宾 | 直播/回看视频 |
---|---|---|
⭐ 最新专题 ⭐ | DSGE, 因果推断, 空间计量等 | |
⭕ Stata数据清洗 | 游万海 | 直播, 2 小时,已上线 |
研究设计 | 连玉君 | 我的特斯拉-实证研究设计,-幻灯片- |
面板模型 | 连玉君 | 动态面板模型,-幻灯片- |
面板模型 | 连玉君 | 直击面板数据模型 [免费公开课,2小时] |
Note: 部分课程的资料,PPT 等可以前往 连享会-直播课 主页查看,下载。
关于我们
课程, 直播, 视频, 客服, 模型设定, 研究设计, stata, plus, 绘图, 编程, 面板, 论文重现, 可视化, RDD, DID, PSM, 合成控制法
等
连享会小程序:扫一扫,看推文,看视频……
扫码加入连享会微信群,提问交流更方便
✏ 连享会学习群-常见问题解答汇总:
✨ https://gitee.com/arlionn/WD