内生性!内生性!解决方法大集合

发布时间:2021-04-25 阅读 4840

Stata连享会   主页 || 视频 || 推文 || 知乎

温馨提示: 定期 清理浏览器缓存,可以获得最佳浏览体验。

New! lianxh 命令发布了:
随时搜索推文、Stata 资源。安装命令如下:
. ssc install lianxh
详情参见帮助文件 (有惊喜):
. help lianxh

课程详情 https://gitee.com/lianxh/Course

课程主页 https://gitee.com/lianxh/Course

⛳ Stata 系列推文:

吴煜铭 (中山大学),757454291@qq.com
郑浩文 (中山大学),zhenghw25@mail2.sysu.edu.cn


目录


1. 内生性的来源

内生性问题 (endogeneity issue) 是指模型中的一个或多个解释变量与误差项存在相关关系。换言之,如果 OLS 回归模型中出现 Cov(x,u)0,则模型存在内生性问题,以致于 OLS 估计量不再是一致估计。进一步,内生性问题主要由以下四种原因导致。

1.1 遗漏变量

在实证研究中,研究者通常无法控制所有能影响被解释变量的变量,因此遗漏解释变量 (omitted variables) 是很常见的事情。假设 OLS 模型中解释变量为 x1 和 x2,研究者遗漏的解释变量为 x2

真实模型: y=α+β1x1+β2x2+μ

遗漏变量: y=α+β1x1+μ

如果遗漏的变量 x2 对另一个解释变量 x1 有影响,就会产生内生性问题。

1.2 选择偏差

选择偏差包括两种形式,即样本选择偏差 (sample selection bias) 和自选择偏差 (self-selection bias)。

样本选择偏差是指因样本选择的非随机性导致结论存在偏差,本质上也是一种遗漏变量问题 (Heckman,1979)。如果是采用类似 “抽签” 的随机方式获得的样本,其估计参数能很好地反映总体的性质。如果所抽取的方法不是随机的,那么无论样本容量有多大,根据这些样本数据估计的参数都不能准确反映总体的性质。

Heckma (1979) 在研究样本选择偏差的时候也意识到了自选择问题。他观察到直接比较管理培训生的工资和非培训生的工资也可能导致处理效应的有偏估计。存在自选择问题的模型中,可能存在某些无法观测的变量同时影响了 y 和 x。比如,在研究员工培训对工资的影响时,员工智力水平可能同时影响是否参加培训和员工工资。

相关参考文献:

  • Heckman J J. Sample selection bias as a specification error[J]. Econometrica: Journal of the econometric society, 1979: 153-161. -PDF-

1.3 双向因果

经济变量通常是相互依赖的,或者说是互为因果。上述现象也会导致内生性问题。比如,在估计需求曲线时,价格 p 是需求模型中的内生解释变量。

1.4 测量误差

当模型使用数据和真实数据存在误差,且满足 CEV 假定时,则会影响估计量的一致性,产生内生性问题。当只有一个解释变量时,CEV 假定下的测量误差将导致 OLS 估计量产生向 0 的偏误,也称为衰减偏误。当模型存在多个解释变量时,其中一个解释变量的测量误差导致 OLS 估计量发生方向不确定的偏移。

2. 内生性的解决方法

2.1 工具变量法

工具变量法 (IV) 可以解决遗漏变量、样本选择、双向因果和测量误差这四种违背经典线性回归假定情况的内生性问题。一般来讲,如果确定研究中存在内生性问题,又无法确定产生原因,可以考虑使用工具变量法。

工具变量法 (IV) 和 两阶段最小二乘法 (TSLS) 都属于 GMM。IV 只是 TSLS 的特例,即 IV 的工具变量个数和内生变量个数相等。当工具变量个数大于内生变量个数时,需要对各工具变量加以权重进行拟合,这时候就需要 TSLS

Angrist 和 Krueger (1991) 使用了一个经典的工具变量——是否出生在第一季度 (弱工具变量)。文章研究的问题是受教育时间对工资的影响,使用的数据是美国 1970 和 1980 年人口统计数据。研究发现,对于那些因义务教育法被迫上学的人来说,再多上一年学所带来的经济回报约为 7.5%。

Acemoglu (2001) 在研究制度对经济的影响时,使用殖民地时期的死亡率做为制度的工具变量。研究发现,制度对经济有很大的影响,具体来看,制度上差异大约解释了前殖民地人均收入差异的四分之三。

在 Acemoglu (2001) 之前,学者在研究类似制度与经济增长的问题时,使用了很多有意思的工具变量。例如:

  • Mauro (1995) 认为不同的语言代表了不同的族源,反映了不同制度的起源,因此语言可以作为各国腐败程度和政府效率的工具变量;
  • Hall 和 Jones (1999) 认为地区到赤道的距离反映了该地区受西方的影响,因此可以作为制度的工具变量。不过,由于与赤道距离还反映气候和地理等因素,因此与赤道距离并不是一个好的工具变量。

作为最基础的内生性问题解决方法,工具变量法在国内也有很多应用。例如:

  • 沈坤荣和李莉 (2005) 在研究银行监管对于防范危机、促进发展的作用时,使用了英美、法国、德国和斯堪的纳维亚四种法系作为工具变量来表示国别差异;
  • 何玉梅和孙艳青 (2011) 为了解决以管理费用率衡量代理成本产生的内生性问题,使用了滞后一期的代理成本作为当期的代理成本的工具变量等。

相关参考文献:

  • Angrist J D, Keueger A B. Does compulsory school attendance affect schooling and earnings?[J]. The Quarterly Journal of Economics, 1991, 106(4): 979-1014. -PDF- -Acemoglu D, Johnson S, Robinson J A. The colonial origins of comparative development: An empirical investigation[J]. American economic review, 2001, 91(5): 1369-1401. -PDF-
  • Mauro P. Corruption and growth[J]. The quarterly journal of economics, 1995, 110(3): 681-712. -PDF-
  • Hall R E, Jones C I. Why do some countries produce so much more output per worker than others?[J]. The quarterly journal of economics, 1999, 114(1): 83-116. -PDF-
  • 沈坤荣, 李莉. 银行监管: 防范危机还是促进发展?——基于跨国数据的实证研究及其对中国的启示[J]. 管理世界, 2005, 10: 6-23. -Link-
  • 何玉梅, 孙艳青. 不完全契约, 代理成本与国际外包水平——基于中国工业数据的实证分析[J]. 中国工业经济, 2011, 12: 57-60. -Link-

2.2 自然实验法

自然实验法指的是在研究中,因为某些外部事件使得研究对象被随机分成了实验组和对照组。其关键在于寻找一个影响被解释变量而不影响解释变量的外部事件。自然实验法本质上是一种观察实验,它是现场和实验室实验之外的另一种选择。

Fuchs-Schündeln 和 Hassan (2016) 将 “自然实验” 中的 “自然” 定义为 “研究人员没有有意识地设计要分析的情节,但仍然可以利用它来学习因果关系。”

也许二战后影响最大的自然实验是德国 1949 年的东西分裂和 1989 年的东西德合并。“柏林墙” 将大量的人口分为生活在不同经济环境下两部分,这相对于人的偏好、经济条件等其他因素是外生的。有很多宏观和微观经济研究是基于这一自然事件。例如:

  • Fuchs-Schündeln 和 Schündeln (2005) 首先利用这个实验研究了基于风险规避的职业自我选择,及其对预防性储蓄的影响;
  • Fuchs-Schündeln 和 Alesina (2007) 利用 “柏林墙” 研究经济政策的内生性偏好;
  • Redding 和 Sturm (2008) 研究了市场准入的重要性;
  • Burchardi 和 Hassan (2013) 研究了社会关系对经济的影响。

除此之外,在永久收入假设的背景下,Fuchs-Schündeln (2008) 认为德国统一对东德人来说是一个巨大的、积极的、永久性的收入冲击,分析了生命周期消费模型的有效性,得出了关于东德人和西德人的储蓄行为的三个类型化特征,并发现强有力的证据支持理性的、前瞻性的储蓄的行为。

相关参考文献:

  • Fuchs-Schündeln N, Hassan T A. Natural experiments in macroeconomics[M]//Handbook of macroeconomics. Elsevier, 2016, 2: 923-1012. -PDF-
  • Fuchs-Schündeln N, Schündeln M. Precautionary savings and Self-Selection: Evidence from the german reunification “Experiment”[J]. The Quarterly Journal of Economics, 2005, 120(3): 1085-1120. -PDF-
  • Alesina A, Fuchs-Schündeln N. Goodbye Lenin (or not?): The effect of communism on people's preferences[J]. American Economic Review, 2007, 97(4): 1507-1528. -PDF-
  • Redding S J, Sturm D M. The costs of remoteness: Evidence from German division and reunification[J]. American Economic Review, 2008, 98(5): 1766-97. -PDF-
  • Burchardi K B, Hassan T A. The economic impact of social ties: Evidence from German reunification[J]. The Quarterly Journal of Economics, 2013, 128(3): 1219-1271. -PDF-
  • Fuchs-Schundeln N. The response of household saving to the large shock of German reunification[J]. American Economic Review, 2008, 98(5): 1798-1828. -PDF-

2.3 处理效应模型

在经济学中评估项目或政策实施效果是一类很重要的研究,此类研究又被称为项目效应评估或政策效应分析。上述研究主要使用的是处理效应模型。它包含一个内生的指示变量,通常和自然科学实验一样分为实验组和对照组 (D=1 或 0),由于实验组和对照组成员初始条件不同,会产生选择偏差 (selection bias)。

处理效应模型与 TSLS 两阶段最小二乘法的区别在于,由于内生解释变量是虚拟变量,处理效应模型第一阶段回归不使用 OLS 回归,而是使用 Logit 或 Probit 回归计算出 hazard ratio,在第二段回归中加入 hazard ratio 调整偏误。Imbens 和 Wooldridge (2009) 总结了评估政策和项目的因果效应的研究方法和历史。

Angrist (1994) 提出了局部平均处理效应 local average treatment (LATE),框架类似于 Rubin (1974, 1990) 和 Heckman (1990)。Angrist (1990) 曾使用越南时期的兵役抽签 Draft Lottery 来估计退伍军人地位对收入的影响,工具变量是随机分配到出生日期的抽签号码(号码被用于确定征兵的优先级,于是服兵役的概率与抽签号码有关)。是否服兵役形成了实验组和对照组。他认为退伍军人身份的平均影响是那些本来会以低抽签号码服兵役的男性,而不是以高抽签号码服兵役的男性。

胡吉祥等 (2011) 研究国有企业上市对绩效的影响时,将公开上市视为对于企业实施的一个处理,按参与上市与否将企业划分为处理组和控制组, 通过估计上市的 ATE 或处理组中的 ATT 来衡量上市对国有企业绩效的效果。

王德文等 (2008) 借助政府实施农村迁移劳动力就业服务和培训计划将农村迁移劳动力是否接受培训分为两组,使用平均处理效应模型应对劳动力是否参加培训存在的个人选择问题。

相关参考文献:

  • Imbens G W, Wooldridge J M. Recent developments in the econometrics of program evaluation[J]. Journal of economic literature, 2009, 47(1): 5-86. -PDF-
  • Angrist J, Imbens G. Identification and estimation of local average treatment effects[J]. 1995. -PDF-
  • Angrist J D. Lifetime earnings and the Vietnam era draft lottery: evidence from social security administrative records[J]. The American Economic Review, 1990: 313-336. -PDF-
  • 胡吉祥, 童英, 陈玉宇. 国有企业上市对绩效的影响: 一种处理效应方法[J]. 经济学 (季刊), 2011, 10(3). -Link-
  • 王德文, 蔡昉, 张国庆. 农村迁移劳动力就业与工资决定: 教育与培训的重要性[J]. 经济学 (季刊), 2008, 7(4). -Link-

2.4 Heckman 模型

Heckman 两阶段模型主要是针对性解决样本选择偏误 (sample selection bias) 导致的内生性问题。Heckman 模型解决的样本选择问题,是由于被解释变量部分观测值的缺失/不可观测导致的。而处理效应模型主要针对核心解释变量为内生虚拟变量的情况,并且处理效应模型中的 y 值都是可观测的。

Heckman 模型分两阶段,第一步使用 Probit 回归模型,并根据回归结果计算逆米尔斯比 (IMR),第二步是将 IMR 带入模型进行回归。Heckman (1979) 使用了 Heckman 模型估计女性劳动供给和工资率水平。该模型在近些年的研究也有不少应用,例如:

  • Weigelt (2013) 研究了客户公司如何在市场安排下从供应商的 IT 能力中获得性能收益,以及公司在 IT 业务内包和外包的不同情况下,供应商的 IT 能力和公司运营能力交互效应对公司业绩的影响。文章第一阶段采用 Probit 模型对公司 IT 业务内包或是外包发生的可能性进行估计,并从中得到 IMR;第二阶段将样本拆分为内包组和外包组进行分组回归,并加入 IMR 来修正样本自选择偏差;
  • 石晓军和王骜然 (2017) 在研究双层股权制度对企业创新的影响时,为了处理部分企业没有 R&D 支出导致的样本偏差,使用 Probit 模型对是否进行 R&D 投入进行回归,并计算逆米尔斯比率比率。之后,将逆米尔斯比率带入模型进行回归;
  • 陈作华和刘子旭 (2019) 在研究政企关系对民营企业特质风险的影响时,使用了 Heckman 法控制可能存在的自选择问题。由于民营企业建立的政企关系可能内生于其所处环境和自身特征,这些因素也可能影响企业的特质风险。他们使用了民营企业家是否参政议政建立虚拟变量,将政企关系作为被解释变量,可能影响政企关系的变量作为解释变量并进行 Probit 回归来估计民营企业建立政企关系的概率,从而得到逆米尔斯比率比率。

相关参考文献:

  • Heckman J J. Sample selection bias as a specification error[J]. Econometrica: Journal of the econometric society, 1979: 153-161. -PDF-
  • Weigelt C. Leveraging supplier capabilities: The role of locus of capability deployment[J]. Strategic Management Journal, 2013, 34(1): 1-21. -Link-
  • 石晓军, 王骜然. 独特公司治理机制对企业创新的影响———来自互联网公司双层股权制的全球证据[J]. 经济研究, 2017, 52(1): 149-164. -Link-
  • 陈作华, 刘子旭. 政企关系与企业特质风险[J]. 管理科学, 2019, 32(4): 48-61. -Link-

2.5 引入固定效应

固定效应模型在面板数据建模中被广泛使用。顾名思义,固定效应是不随时间或个体变化的因素,它是难以观测的。模型中之所以要加入固定效应,是因为这些因素可能与解释变量相关,如果包含在扰动项中则会产生内生性问题。

Flannery(2006)建立了公司向目标资本结构动态调整的模型。方程如下;

其中目标资本结构为:

方程整理后,加入公司固定效应:

在此之前,Fama 和 MacBeth 也进行过类似研究,但没有在方程中加入固定效应。除了控制个体的固定效应,研究中还经常引入时间的固定效应,即只与时间相关、不随个体变化的因素,如经济环境等。这样的模型被称为双向固定效应模型。例如:

  • 曹廷求和张光利 (2020) 在研究公司自愿信息披露对股价崩盘风险的影响时,同时控制了了个体、时间 (季度和年度) 固定效应;
  • 蔡庆丰等 (2020) 研究信贷可得性与企业创新的关系时,入了行业、年份和企业的固定效应;
  • 高晶晶等 (2019) 探究影响农户化肥使用量高低的因素时,为了削弱内生性,模型中控制了年份和个体的固定效应。

需要说明的是,固定效应模型只能消除部分的内生性,因此它通常与工具变量法、倍分法等其他内生性处理方法混合使用。如工具变量需要与扰动项无关,且与内生解释变量强相关。前一个条件(外生性)往往很难满足。加入固定效应后,扰动项中部分内生因素被剔除,此时再引入工具变量时,外生性条件更容易被满足,工具变量的质量提高。

相关参考文献:

  • Flannery M J, Rangan K P. Partial adjustment toward target capital structures[J]. Journal of financial economics, 2006, 79(3): 469-506. -PDF-
  • 曹廷求, 张光利. 自愿性信息披露与股价崩盘风险:基于电话会议的研究[J]. 经济研究, 2020, 55(11):191-207. -Link-
  • 蔡庆丰, 陈熠辉, 林焜. 信贷资源可得性与企业创新: 激励还是抑制?——基于银行网点数据和金融地理结构的微观证据[J]. 经济研究, 2020. -Link-
  • 高晶晶, 彭超, 史清华. 中国化肥高用量与小农户的施肥行为研究——基于 1995~ 2016 年全国农村固定观察点数据的发现[J]. 管理世界, 2019, 35(10): 12. -Link-

2.6 广义矩估计

动态面板模型是解释变量中包含被解释变量滞后项的模型,可以理解成过去会在某种程度上影响未来的模型。当用差分去除模型中的固定效应时,方程中滞后项的差分便与扰动项的差分相关,产生内生性 (短面板中难以消除,所以也称短面板偏误)。GMM 估计方法通过引入滞后两期及以上的滞后项作为工具变量,并尽可能地满足所有矩条件,得到一个较好的估计量。实质上,GMM 也是工具变量法。

GMM 包含多种形式。估计差分模型的为差分 GMM,采用水平方程的为水平 GMM,联立差分和水平方程的为系统 GMM。其中差分 GMM 和系统 GMM 使用更加广泛。田国强和李双建 (2020) 在研究经济不确定性对银行流动性创造的影响时,首先采用了不包含银行流动性滞后项的静态面板模型。后考虑到银行流动性具有自相关性,模型加入了流动性的滞后变量,采用差分和系统 GMM 估计排除动态面板偏误的影响。

相关参考文献:

  • Blundell R, Bond S. GMM estimation with persistent panel data: an application to production functions[J]. Econometric reviews, 2000, 19(3): 321-340. -PDF-
  • Flannery M J, Rangan K P. Partial adjustment toward target capital structures[J]. Journal of financial economics, 2006, 79(3): 469-506. -PDF-
  • 田国强, 李双建. 经济政策不确定性与银行流动性创造:来自中国的经验证据[J]. 经济研究, 2020, 55(11):19-35. -Link-
  • 张宗新, 缪婧倩. 基金流量与基金投资行为——基于动态面板数据模型的实证研究[J]. 金融研究, 2012, 4: 110-123. -Link-

2.7 断点回归

断点回归的思路是研究某一断点处的政策效应,因为在特定断点处,实验组和对照组可以认为是本质上差异不大的。

Cattaneo (2015) 研究州议员选举中的在任者优势时,认为在任者可能拥有更高的知名度、阻止反对党的能力和信息优势,可能帮助其在选举中获胜。但是这其中存在内生性问题,即在任者可能本来就具有更强的能力,拥有更高的胜选机会。因此,文中选择以得票率等于50% 为断点,断点附近的选举中候选人之间得票比率相差较小,表示其能力相差不大,由此剔除了内生因素。

田文佳等 (2019) 研究工业用地出让价格与官员晋升激励程度的关系时,认为官员为了晋升,可能会压低地块出让价格来吸引企业投资,达到提高经济绩效的效果。模型以官员任职时间作为晋升激励大小的代理解释变量,用工业用地出让对其回归。为了消除不可测的地理因素对地块本身价值的影响,文章使用城市边界附近的地块作为样本,设计了断点回归。

断点回归分为清晰断点回归和模糊断点回归,区别是断点是否能完全分割实验组和对照组。上述官员晋升激励的研究中,城市边界能完全区分地块所述城市,因此为清晰断点回归。

刘生龙等 (2016) 研究 1986 年义务教育法的出台对教育经济回报率的影响,认为出生日期在 1971 年 9 月之后的样本会受到义务教育法影响 (15 岁),之前的则不会,因此可以作为断点。而考虑到不是所有人都严格完成九年义务教育,该断点并不能完全分开是否受影响的人群,所以文章采用模糊断点回归,采用两阶段最小二乘法估计。

相关参考文献:

  • Cattaneo M, Frandsen B, Titiunik R. Randomization inference in the regression discontinuity design: An application to the study of party advantages in the US Senate[J]. Journal of Causal Inference, 2014, 3(1), 1-24. -PDF-
  • 田文佳, 余靖雯, 龚六堂. 晋升激励与工业用地出让价格——基于断点回归方法的研究[J]. 经济研究, 2019, 10. -Link-
  • 刘生龙, 周绍杰, 胡鞍钢. 义务教育法与中国城镇教育回报率: 基于断点回归设计[J]. 经济研究, 2016, 2: 154-167. -Link-

2.8 倾向得分匹配模型

倾向得分匹配模型 (propensity score matching,PSM) 类似于多元线性回归。不过多元线性回归 (MR) 的无偏估计依赖于函数形式的正确设定,否则会出现函数形式误设 (functional form misspecification,FFM) 导致估计量有偏。PSM 模型通过匹配可以减少对函数形式的依赖,放松对多元回归模型的线性假设,进而缓解 FFM 问题。

关于 PSM 方法有三个误区:

  • 一是 PSM 方法并没有从根本上解决由选择偏差或遗漏变量导致的内生性问题,更不能代替 Heckman 和 IV 等方法用于解决自选择、遗漏变量等问题;
  • 二是 PSM 不能被称为 “准实验”,也无法模拟实验条件;
  • 三是 PSM 的外部有效性问题。在 “共同支撑假设 (Common Support)”无法满足或很牵强的情况下,PSM 会系统排除缺乏对照组的样本,进而使得样本代表性变差,影响结果的外部有效性。

关于 PSM 更多详细介绍,请参考连享会推文「Stata:PSM-倾向得分匹配分析的误区」

徐尚昆等 (2020) 在研究企业家在国有企业的工作经历对其企业成长的影响时,为了排除有能力的人 “更有可能进入国有企业工作” 这一自选择偏误,使用了临近匹配和核匹配两种 PSM。不过在这一研究中,作者也强调了 PSM 只能缓解由于可观测变量带来的内生性问题,无法处理最为关键的不可观测变量带来的内生性。

相关参考文献:

  • 徐尚昆, 郑辛迎, 杨汝岱. 国有企业工作经历, 企业家才能与企业成长[J]. 中国工业经济, 2020, 1. -Link-

3. 相关推文

Note:产生如下推文列表的 Stata 命令为:
lianxh 内生性 安慰剂 稳健性, m
安装最新版 lianxh 命令:
ssc install lianxh, replace

相关课程

免费公开课

最新课程-直播课

专题 嘉宾 直播/回看视频
最新专题 文本分析、机器学习、效率专题、生存分析等
研究设计 连玉君 我的特斯拉-实证研究设计-幻灯片-
面板模型 连玉君 动态面板模型-幻灯片-
面板模型 连玉君 直击面板数据模型 [免费公开课,2小时]
  • Note: 部分课程的资料,PPT 等可以前往 连享会-直播课 主页查看,下载。

课程主页

课程主页

关于我们

  • Stata连享会 由中山大学连玉君老师团队创办,定期分享实证分析经验。
  • 连享会-主页知乎专栏,400+ 推文,实证分析不再抓狂。直播间 有很多视频课程,可以随时观看。
  • 公众号关键词搜索/回复 功能已经上线。大家可以在公众号左下角点击键盘图标,输入简要关键词,以便快速呈现历史推文,获取工具软件和数据下载。常见关键词:课程, 直播, 视频, 客服, 模型设定, 研究设计, stata, plus, 绘图, 编程, 面板, 论文重现, 可视化, RDD, DID, PSM, 合成控制法

连享会小程序:扫一扫,看推文,看视频……

扫码加入连享会微信群,提问交流更方便

✏ 连享会-常见问题解答:
https://gitee.com/lianxh/Course/wikis

New! lianxh 命令发布了:
随时搜索连享会推文、Stata 资源,安装命令如下:
. ssc install lianxh
使用详情参见帮助文件 (有惊喜):
. help lianxh