司继春,上海对外经贸大学统计与信息学院讲师,主要研究领域为微观计量经济学、产业组织理论,成果见诸 Journal of Business and Economic Statistics、《中国人口科学》、《系统工程理论与实践》等期刊。司老师专长于机器学习,尤其是基于机器学习的因果推断前沿方法,有多个大型数据分析项目的实战经验。业余时间里,司老师也经常在知乎上耐心作答,用通俗的语言普及统计和计量知识。他的知乎专栏名为「慧航」,关注者逾 31w,获赞超过 17w。他总能抽丝剥茧,把复杂的问题讲得清清楚楚。
Aiken E L, Bedoya G, Blumenstock J E, et al. Program targeting with machine learning and mobile phone data: Evidence from an anti-poverty intervention in Afghanistan. Journal of Development Economics, 2023, 161: 103016. -PDF-
Cengiz D, Dube A, Lindner A, et al. Seeing beyond the trees: Using machine learning to estimate the impact of minimum wages on labor market outcomes. Journal of Labor Economics, 2022, 40(S1): S203-S247. -PDF-
Gilchrist, Duncan Sheppard, and Emily Glassberg Sands. "Something to talk about: Social spillovers in movie consumption." Journal of Political Economy, 124.5 (2016): 1339-1382. -PDF-
Goulet Coulombe P, Leroux M, Stevanovic D, et al. How is machine learning useful for macroeconomic forecasting?. Journal of Applied Econometrics, 2022, 37(5): 920-964. -PDF-
Kaniel R, Lin Z, Pelger M, et al. Machine-learning the skill of mutual fund managers. NBER working paper, 2022. -PDF-
Mullainathan S, Obermeyer Z. Diagnosing physician error: A machine learning approach to low-value health care. The Quarterly Journal of Economics, 2022, 137(2): 679-727. -PDF-
Thorsrud L A. Words are the new numbers: A newsy coincident index of the business cycle. Journal of Business & Economic Statistics, 2020, 38(2): 393-409. -PDF-
Khachiyan A, Thomas A, Zhou H, et al. Using Neural Networks to Predict Microspatial Economic Growth. American Economic Review: Insights, 2022, 4(4): 491-506.(略难) -PDF-
参考文献:
Pollmann M. Causal inference for spatial treatments. arXiv preprint arXiv:2011.00373, 2022. -PDF-
Deryugina T, Heutel G, Miller N H, et al. The mortality and medical costs of air pollution: Evidence from changes in wind direction. American Economic Review, 2019, 109(12): 4178-4219. -PDF-
参考文献:
Athey, Susan, and Stefan Wager. "Estimating treatment effects with causal forests: An application." Observational Studies 5.2 (2019): 37-51. -PDF-
Buhl-Wiggers J, Kerwin J T, Muñoz-Morales J, et al. Some children left behind: Variation in the effects of an educational intervention. Journal of Econometrics, 2022. -PDF-
Cockx B, Lechner M, Bollens J. Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium. Labour Economics, 2023, 80: 102306. -PDF-
Knaus M C, Lechner M, Strittmatter A. Heterogeneous Employment Effects of Job Search Programs A Machine Learning Approach. Journal of Human Resources, 2022, 57(2): 597-636. -PDF-
Knaus M C, Lechner M, Strittmatter A. Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence. The Econometrics Journal, 2021, 24(1): 134-161. -PDF-
Deryugina T, Heutel G, Miller N H, et al. The mortality and medical costs of air pollution: Evidence from changes in wind direction. American Economic Review, 2019, 109(12): 4178-4219. -PDF-
参考文献:
Chernozhukov, V., D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, W. Newey,J. Robins, 2018, Double/debiased machine learning for treatment and structural parameters, The Econometrics Journal, 21 (1): C1-C68. -Link-, -PDF1-, -PDF2-, Replication
Knaus, Michael C. "A double machine learning approach to estimate the effects of musical practice on student’s skills." Journal of the Royal Statistical Society: Series A (Statistics in Society) 184.1 (2021): 282-300. -PDF-
Knaus M C, Lechner M, Strittmatter A. Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence. The Econometrics Journal, 2021, 24(1): 134-161. -PDF-
Knaus M C. Double machine learning-based programme evaluation under unconfoundedness. The Econometrics Journal, 2022, 25(3): 602-627. -PDF-