发布时间:2020-10-07 阅读 7615

Stata 连享会   主页 || 视频 || 推文


温馨提示: 定期 清理浏览器缓存,可以获得最佳浏览体验。


Source: Github - aahr1 / pdslasso


Stata package: pdslasso

pdslasso and ivlasso are routines for estimating structural parameters in linear models with many controls and/or instruments. The routines use methods for estimating sparse high-dimensional models, specifically the lasso (Least Absolute Shrinkage and Selection Operator, Tibshirani 1996) and the square-root-lasso (Belloni et al. 20112014).

These estimators are used to select controls (pdslasso) and/or instruments (ivlasso) from a large set of variables (possibly numbering more than the number of observations), in a setting where the researcher is interested in estimating the causal impact of one or more (possibly endogenous) causal variables of interest.

Two approaches are implemented in pdslasso and ivlasso:

  1. The post-double-selection methodology of Belloni et al. (20122013201420152016).
  2. The post-regularization methodology of Chernozhukov, Hansen and Spindler (2015).

For instrumental variable estimation, `ivlasso implements weak-identification-robust hypothesis tests and confidence sets using the Chernozhukov et al. (2013) sup-score test.

The implemention of these methods in pdslasso and ivlasso require the Stata program rlasso (available in the separate Stata module lassopack), which provides lasso and square root-lasso estimation with data-driven penalization.


To install the latest version from SSC, type

ssc install lassopack, replace
ssc install pdslasso, replace

Help files

For further information on pdslasso and ivlasso, type

help pdslasso

The help files contain more information about the implemented routines and examples.


Thanks to Sergio Correia for advice on the use of the FTOOLS package.


pdslasso and ivlasso are not official Stata commands. They are free contributions to the research community, like a paper. Please cite it as such:

Ahrens, A., Hansen, C.B., Schaffer, M.E. 2018. pdslasso and ivlasso: Progams for post-selection and post-regularization OLS or IV estimation and inference.


Achim Ahrens, Economic and Social Research Institute, Ireland

Christian B. Hansen, University of Chicago, USA

Mark E Schaffer, Heriot-Watt University, UK

Issues and questions

If you have encountered any issues with pdslasso, contact achim.ahrens(at) and m.e.schaffer(at) If you have questions about the use of pdslasso, contact us via Statalist.


连享会-直播课 上线了!




专题 嘉宾 直播/回看视频
最新专题 DSGE, 因果推断, 空间计量等
Stata数据清洗 游万海 直播, 2 小时,已上线
研究设计 连玉君 我的特斯拉-实证研究设计-幻灯片-
面板模型 连玉君 动态面板模型-幻灯片-
面板模型 连玉君 直击面板数据模型 [免费公开课,2小时]

Note: 部分课程的资料,PPT 等可以前往 连享会-直播课 主页查看,下载。


  • Stata连享会 由中山大学连玉君老师团队创办,定期分享实证分析经验。直播间 有很多视频课程,可以随时观看。
  • 连享会-主页知乎专栏,300+ 推文,实证分析不再抓狂。
  • 公众号推文分类: 计量专题 | 分类推文 | 资源工具。推文分成 内生性 | 空间计量 | 时序面板 | 结果输出 | 交乘调节 五类,主流方法介绍一目了然:DID, RDD, IV, GMM, FE, Probit 等。
  • 公众号关键词搜索/回复 功能已经上线。大家可以在公众号左下角点击键盘图标,输入简要关键词,以便快速呈现历史推文,获取工具软件和数据下载。常见关键词:课程, 直播, 视频, 客服, 模型设定, 研究设计, stata, plus, 绘图, 编程, 面板, 论文重现, 可视化, RDD, DID, PSM, 合成控制法




✏ 连享会学习群-常见问题解答汇总: